Foveal versus full-field visual stabilization strategies for translational and rotational head movements.
نویسندگان
چکیده
Because we view the world from a constantly shifting platform when our head and body move in space, vestibular and visuomotor reflexes are critical to maintain visual acuity. In contrast to the phylogenetically old rotational vestibulo-ocular reflex (RVOR), it has been proposed that the translational vestibulo-ocular reflex (TVOR) represents a newly developed vestibular-driven mechanism that is important for foveal vision and stereopsis. To investigate the hypothesis that the function of the TVOR is indeed related to foveal (as opposed to full-field) image stabilization, we compared the three-dimensional ocular kinematics during lateral translation and rotational movements with those during pursuit of a small moving target in four rhesus monkeys. Specifically, we tested whether TVOR rotation axes tilt with eye position as in visually driven systems such as pursuit, or whether they stay relatively fixed in the head as in the RVOR. We found a significant dependence of three-dimensional eye velocity on eye position that was independent of viewing distance and viewing conditions (full-field, single target, or complete darkness). The slopes for this eye-position dependence averaged 0.7 +/- 0.07 for the TVOR, compared with 0.6 +/- 0.07 for visually guided pursuit eye movements and 0.18 +/- 0.09 for the RVOR. Because the torsional tilt versus vertical gaze slopes during translation were slightly higher than those during pursuit, three-dimensional eye movements during translation could partly reflect a compromise between the two different solutions for foveal gaze control, that of Listing's law and minimum velocity strategies. These results with respect to three-dimensional kinematics provide additional support for a functional difference in the two vestibular-driven mechanisms for visual stability during rotations and translations and establish clearly the functional goal of the TVOR as that for foveal visual acuity.
منابع مشابه
Similar kinematic properties for ocular following and smooth pursuit eye movements.
Ocular following (OFR) is a short-latency visual stabilization response to the optic flow experienced during self-motion. It has been proposed that it represents the early component of optokinetic nystagmus (OKN) and that it is functionally linked to the vestibularly driven stabilization reflex during translation (translational vestibuloocular reflex, TVOR). Because no single eye movement can e...
متن کاملHead Stabilization in the Pigeon: Role of Vision to Correct for Translational and Rotational Disturbances
Stabilization of the head in animals with limited capacity to move their eyes is key to maintain a stable image on the retina. In many birds, including pigeons, a prominent example for the important role of head stabilization is the characteristic head-bobbing behavior observed during walking. Multimodal sensory feedback from the eyes, the vestibular system and proprioceptors in body and neck i...
متن کاملVisual gaze control during peering flight manoeuvres in honeybees.
As animals travel through the environment, powerful reflexes help stabilize their gaze by actively maintaining head and eyes in a level orientation. Gaze stabilization reduces motion blur and prevents image rotations. It also assists in depth perception based on translational optic flow. Here we describe side-to-side flight manoeuvres in honeybees and investigate how the bees' gaze is stabilize...
متن کاملResolution of sensory ambiguities for gaze stabilization requires a second neural integrator.
The ability to simultaneously move in the world and maintain stable visual perception depends critically on the contribution of vestibulo-ocular reflexes (VORs) to gaze stabilization. It is traditionally believed that semicircular canal signals drive compensatory responses to rotational head disturbances (rotational VOR), whereas otolith signals compensate for translational movements [translati...
متن کاملThree-dimensional vestibuloocular reflex of the monkey: optimal retinal image stabilization versus listing's law.
If the rotational vestibuloocular reflex (VOR) were to achieve optimal retinal image stabilization during head rotations in three-dimensional space, it must turn the eye around the same axis as the head, with equal velocity but in the opposite direction. This optimal VOR strategy implies that the position of the eye in the orbit must not affect the VOR. However, if the VOR were to follow Listin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2003